Package: ehaGoF 0.1.1

ehaGoF: Calculates Goodness of Fit Statistics

Calculates 15 different goodness of fit criteria. These are; standard deviation ratio (SDR), coefficient of variation (CV), relative root mean square error (RRMSE), Pearson's correlation coefficients (PC), root mean square error (RMSE), performance index (PI), mean error (ME), global relative approximation error (RAE), mean relative approximation error (MRAE), mean absolute percentage error (MAPE), mean absolute deviation (MAD), coefficient of determination (R-squared), adjusted coefficient of determination (adjusted R-squared), Akaike's information criterion (AIC), corrected Akaike's information criterion (CAIC), Mean Square Error (MSE), Bayesian Information Criterion (BIC) and Normalized Mean Square Error (NMSE).

Authors:Alper Gulbe [cre], Ecevit Eyduran [aut]

ehaGoF_0.1.1.tar.gz
ehaGoF_0.1.1.zip(r-4.5)ehaGoF_0.1.1.zip(r-4.4)ehaGoF_0.1.1.zip(r-4.3)
ehaGoF_0.1.1.tgz(r-4.5-any)ehaGoF_0.1.1.tgz(r-4.4-any)ehaGoF_0.1.1.tgz(r-4.3-any)
ehaGoF_0.1.1.tar.gz(r-4.5-noble)ehaGoF_0.1.1.tar.gz(r-4.4-noble)
ehaGoF_0.1.1.tgz(r-4.4-emscripten)ehaGoF_0.1.1.tgz(r-4.3-emscripten)
ehaGoF.pdf |ehaGoF.html
ehaGoF/json (API)

# Install 'ehaGoF' in R:
install.packages('ehaGoF', repos = c('https://agulb.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.70 score 50 scripts 221 downloads 18 exports 0 dependencies

Last updated 5 years agofrom:3fb41c030e. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 15 2025
R-4.5-winOKMar 15 2025
R-4.5-macOKMar 15 2025
R-4.5-linuxOKMar 15 2025
R-4.4-winOKMar 15 2025
R-4.4-macOKMar 15 2025
R-4.4-linuxOKMar 15 2025
R-4.3-winOKMar 15 2025
R-4.3-macOKMar 15 2025

Exports:GoFgofACoDgofAICgofARSqgofCAICgofCoDgofCVgofMADgofMAPEgofMEgofMRAEgofPCgofPIgofRAEgofRMSEgofRRMSEgofRSqgofSDR

Dependencies: